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Abstract. We estimate the error in the semiclassical trace formula for the Sinai billiard under
the assumption that the largest source of error is due to penumbra diffraction: namely, diffraction
effects for trajectories passing within a distanceR ·O((kR)−2/3) to the disc and trajectories being
scattered in very forward directions. Herek is the momentum andR the radius of the scatterer. The
semiclassical error is estimated by perturbing the Berry–Keating formula. The analysis necessitates
an asymptotic analysis of very long periodic orbits. This is obtained within an approximation
originally due to Baladi, Eckmann and Ruelle. We find that the average error, for sufficiently large
values ofkR, will exceed the mean level spacing.

1. Introduction

During the early days of the trace formula nobody really believed that it could be used to
predict individual eigenvalues, at least not in the strict semiclassical limit. The experience
from numerical computations is that the Gutzwiller–Voros zeta function [1] does exhibit
complex zeros quite close to the (real) quantum eigenvalues, at least in the lower part of
the spectrum [2–4]. The Berry–Keating formula performs even better [4, 5]. The successful
numerical results in the bottom of the spectra left room for some optimism concerning the error
in the strict semiclassical limit, because common estimates have suggested that the average
semiclassical error, measured relative to the mean level spacing, should tend to a constant as
h̄→ 0, for systems in two degrees of freedom. For a nice review, see [6].

There are mainly two sources of errors. First, the semiclassical energy domain Green
function is obtained by Laplace transforming the Van Vleck propagator [1]. However, quantum
evolution follows classical evolution only for a limited time, a time that seems to be longer
than first expected [7], but still limited. Computing the Laplace transform of such an object
is, of course, adventurous.

Secondly, the trace formula is obtained by taking the trace of this energy domain Green
function by a stationary phase technique. This is the procedure that selects out the periodic
orbits. Whether or not this stationary phase approximation is justified for a particular cycle
depends on ¯h, whenh̄ is sufficiently smallit is justified.

So, the performance of the trace formula depends on the set of cycles that are required
to resolve a particular state, and how well the semiclassical approximation is justified for
those particular orbits. Consequently, thesemiclassical erroris not a well-defined concept.
It depends on the method by which the eigenvalues are extracted. In the Berry–Keating
method [8] it depends on how the semiclassical approximation works around periodic orbits
up to a certain cutoff length. One thus assumes that the neglected tailshouldbe able to put the
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zero on the real energy axis. In complex methods, based oncycle expansions[9], one includes
this tail as it is. It contains long orbits, for which the semiclassical approximation obviously
is nonsense. They will effect convergence of the cycle expansion and the final position of
the eigenvalue. In the present paper we have, for these reasons, found it natural to use the
Berry–Keating formula as the starting point for the analysis of the semiclassical error.

A semiclassical error can also be defined in other contexts. One approach is based on
the boundary integral method and the semiclassical limit of the characteristic determinant
[10]. Bogomolny’s transfer matrix method is, in the case of billiards, closely related to this
approach [11].

We will be interested in the semiclassical error for fairly realistic systems. The trace
formulais exact for some systems, such as the Cat map [12,13] and geodesic flow on surfaces
of constant negative curvature [14]. These are uniformly hyperbolic systems and are no good
as representatives for generic Hamiltonian systems.

There are two common features of chaotic systems that may cause severe problems to
the stationary phase approximation. One isintermittency. In terms of periodic orbits, this
means that periodic orbit stabilities cannot be exponentially bounded with length, as opposed
to uniformly hyperbolicsystems where they can†. This implies that the Berry–Keating sum
may contain periodic orbits for which the semiclassical approximation is far from justified. If
a periodic orbit has a low stability eigenvalue, it means that the stationary phase integral cannot
be cut off sufficiently far from neighbouring periodic orbits. The problem can often be traced
to pairs or families of periodic orbits related by bifurcations. Intermittency can be avoided in
billiard systems but hardly in smooth Hamiltonian flows, so we consider it as a generic feature.

Secondly, the complex topology of generic systems make bifurcations abundant (with
respect to the variation of some parameter)—generic systems are not structurally stable. There
arealmost forbiddenandalmost existingorbits all over phase space. One can imagine different
strategies to deal with this problem. For billiards, it has been suggested to provide the saddle
point integrals with cutoffs, which lead to diffraction effects [15]. The lack of simple symbolic
coding of periodic orbits indeed proliferates diffraction effects. Uniformly hyperbolic systems
with a complete symbolic dynamics such as the Baker map [16] do exhibit diffraction effects,
but they are concentrated along the boundary of the generating partition.

Diffraction is not an issue for smooth potentials. But the lack of discontinuities gives
us no relief. Periodic orbits close to bifurcation are dense in phase space. A periodic
orbit gets stabilized close to bifurcation, which again causes problems to the trace integral.
Sufficiently pruned orbits can be included as ghost orbits [17] but close to bifurcations uniform
approximations have to be invoked [18,19]. It seems to be a formidable task to include these
corrections in a consistent quantization scheme.

Billiard systems are easier to analyse and in the present paper we have chosen the Sinai
billiard as our model system. It is in many respects generic; it suffers from both intermittency
and a lack of simple topology. Yet, it is simple enough to allow some analytical treatment.

There are two pioneering studies indicating that many of the terms included in the Berry–
Keating sum are way off and that the stationary phase approximation behind them is simply
not justified. Tanner [20] studied the dynamics close to the bouncing ball orbit in the stadium
billiard. Primacket al [15] demonstrated that, for the Sinai billiard, the standard semiclassical
approximation breaks down in a ¯h-dependent region associated with orbits scattering in very
forward directions or sneaking very close to the disc. They coined the namepenumbrafor this
region.

† Periodic orbit stabilities3p can be exponentially bounded with periodTp , if all cycle Lyapunov exponents
λp ≡ log |3p|/Tp exceed some positive number. In intermittent (or nonuniformly hyperbolic) systemsλp can
be arbitrary small.
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The paper [15] by Primacket al is the main inspiration for the present study. By
estimating the size of thispenumbraand its scaling in ¯h, they concluded that ‘the semiclassical
approximation fails for the majority of the relevant POs(periodic orbits)in the semiclassical
limit’. It thus seems unlikely that the Berry–Keating approach will continue to produce
individual eigenvalues in the strict semiclassical limit. Such a conclusion is by no means
obvious. Simple conclusions can (maybe) be drawn if the system is uniformly hyperbolic. But
cycles contribute with very different weights in intermittent systems, such as the Sinai billiard.
If a minority of non-diffractive cycles carried a large part of the semiclassical weight one
could perhaps argue that the trace formula could continue forever to produce individual states.
But unfortunately the situation is the opposite. The cycles being most prone to penumbra
diffraction have large semiclassical weights. The goal of this paper is to make this reasoning
more precise.

In a later study Primacket al[6] seem to tone down the importance of penumbra diffraction.
They suggest that the semiclassical error in the semiclassical limit is of the order of the
mean level spacing, or diverges very slowly. The more optimistic interpretation would allow
individual states to be resolved, even in the strict semiclassical limit. The study is mainly
numerical: it is an ambiguous attempt to extrapolate from finite sets of quantum states and
periodic orbits into the semiclassical limit. In the present paper we find that the error will
irrevocably increase beyond the mean level spacing. Our finding is consistent with the more
pessimistic interpretation of [6]. The numerical results of Boasman [10] for the stadium billiard
also allow a slowly growing error.

The main obstacle against exploring the strict semiclassical limit with explicitly computed
periodic orbits is that they are so numerous. What is badly needed is an asymptotic theory for
the distribution of long periodic orbits, a theory extending beyond standard sum rules [21,22].
Such a theory has been suggested [23–26], based on an idea of Baladiet al [27].

The structure of this paper is very much like a cooking recipe. In section 2 we present all
the ingredients, such as the semiclassical zeta function, the Berry–Keating formula, penumbra
diffraction, some classical periodic orbit theory and the Baladi, Eckmann and Ruelle (BER)
approximation. In section 3 we do the actual cooking. We consider the shift of a zero of
the Berry–Keating formula if a perturbation, due to an error, is added. This simple exercise
gives us the semiclassical error in terms of finite sums over pseudo-orbits. We then relate
these pseudo-orbit sums to various zeta functions. These zeta functions are calculated in the
BER approximation. In section 4 we present the outcome of the calculations. Then follows
(section 5) a discussion about the validity of the various assumptions and approximations that
underlie the results.

2. Ingredients

2.1. The semiclassical zeta function

The starting point will be the Gutzwiller–Voros zeta function [1, 28] whose zeros are to be
associated with the quantum eigenvalues. It is usually represented as a product over all primitive
periodic orbitsp of the systems

Zsc(E) =
∏
p

∞∏
m=0

(
1− ei[Sp/h̄−µp π2 ]

|3p|1/23m
p

)
(1)

whereSp = Sp(E) is the action alongp, µp the Maslov index and3p is the expanding
eigenvalue of the Jacobian.
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An expansion of this infinite product usually has a larger domain of convergence. To
obtain such acycle expansion[29], we first expand the inner Euler product

Zsc(E) =
∏
p

∞∑
n=0

3
−n(n−1)/2
p∏n

j=1(1−3−jp )

(
−ei[Sp/h̄−µp π2 ]

|3p|1/2
)n

(2)

=
∏
p

∞∑
n=0

Cp,ne
i[nSp−nµp π2 ] (3)

where

Cp,n = (−1)n
3
−n(n−1)/2
p

|3p|n/2
∏n
j=1(1−3−jp )

. (4)

If we now also expand the product overp, we obtain the cycle expansion in the form of a
Dirichlet series. It is a sum over all pseudo-orbits, that is, all distinct combinations of periodic
orbits: α = pnp1

1 p
np2
2 . . . p

npk
k . . .

Zsc(E) =
∑
α

Cαei[Sα−µα π2 ] (5)

where we have defined the quantities

Cα =
∏
p

Cp,np (6)

Sα =
∑
p

npSp (7)

µα =
∑
p

npµp. (8)

We will restrict ourselves to billiards: the cycle actionSp is then given in terms of the
geometric lengthSp = Lp · k wherek = √2E. The units are chosen such thatm = h̄ = 1 and
the semiclassical limit ¯h → 0 is replaced byk → ∞. In the following, we use the complex
variablek rather than the energyE and the Maslov indices will be absorbed in the amplitudes
Cα:

Zsc(k) =
∑
α

CαeiLαk. (9)

For dispersive billiards, such as the Sinai billiard, the Maslov indices are even and the redefined
amplitudesCα will still be real.

Note that the sizes of the amplitudes are to leading order

Cp,n ∼ 1

|3p|n2/2
(10)

and thus decay fast withn. The zeta function is not seriously affected if one restricts then to
n ∈ {0, 1}, at least as long as we stay on the real energy axis. This amounts to retaining only
the factorm = 0 in (1). The resulting type of zeta function is often referred to as adynamical
zeta function. The higherm-factors influence the analytic structure of the zeta function far
down in the complexk-plane in a quite intricate way.

2.2. The Berry–Keating formula

The spectral determinant, formally defined asD =∏i (E − Ei) ∼
∏
i (k − ki)(k + ki) where

Ei = k2
i /2 are the energy eigenvalues, obviously obeys the functional equation

D(k) = D(−k). (11)
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The semiclassical analogue to the spectral determinant is

Dsc(k) = e−iπN̄(k)Zsc(k) =
∑
α

Cαei(Lαk−πN̄(k)) (12)

whereN̄ denote the mean spectral staircase function. It is the average of the staircase function
N(k) =∑i θ(ki − k) whereθ(·) is the unit step function. The idea of Berry and Keating [8]
was to postulate that the semiclassical determinant also satisfies the functional equation (11).
This is, of course, not exactly true† but by insisting on it one can convert equation (12) to a
finite sum

Dsc(k) = 2
∑

α:Lα<LBK

Cα cos(Lαk − πN̄(k)) (13)

where the cutoff lengthLBK is related to the mean spectral staircase functionN̄(k)

LBK = π dN̄(k)

dk
. (14)

For a billiard the functionN̄(k) is, to leading order, given by Weyl’s law:̄N = Ak2

4π , whereA
is the billiard area. So the cutoff length is given by

LBK = Ak

2
. (15)

If neutral orbits are present, as they are in the Sinai billiard, their contribution can be
included in N̄(k) which is then decorated by oscillation whose amplitude decreases with
increasingk.

2.3. The classical zeta function

Another central object in our investigation will be the (weighted) evolution operator [29],
whose action on a phase space distribution function8(x) is given by

Ltw8(x) =
∫
w(x, t)δ(x − f t (y))8(y) dy. (16)

The phase space pointy is taken by the flow tof t (y) during timet . w(x, t) is a weight
associated with a trajectory starting atx and evolved during timet . It is multiplicative along
the flow, that isw(x, t1 + t2) = w(x, t1)w(f t1(x), t2). If w ≡ 1, the operator just describes the
plain classical evolution of phase space densities.

In the following we will restrict ourselves to chaotic 2D billiards, and will use traversed
lengthL as the ‘time’ variable.

Zeta functions are usually introduced through the trace of the evolution operator. This
trace can be represented in terms of periodic orbits in two ways. First as a sum

tr LLw =
∑
p

Lp

∞∑
r=1

wrp
δ(L− rLp)
| det(1−Mr

p)|
(17)

wherer is the number of repetitions of primitive orbitp, having periodLp. Mp is the Jacobian
of the Poincaŕe map, its expanding eigenvalue is3p, and the cycle weight iswp = w(xp, Tp)
wherexp ∈ p is any point onp (wp does not depend on which of these points is chosen
because of the multiplicative structure ofw(x, t)).

† In, e.g., the Sinai billiard the semiclassical zeta function has a branch cut along the negative imaginaryk-axis and
the equationDsc(k) = Dsc(−k) cannot hold [30].
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The trace can also be written in terms of of aFredholm determinantFw(s):

tr LLw =
1

2π i

∫ ai∞

a−i∞
esL

F ′w(s)
Fw(s)

ds. (18)

whereFw(s) is given by

Fw(s) =
∏
p

∞∏
m=0

(
1− wp e−sLp

|3p|3m
p

)m+1

. (19)

Again we will deal only with them = 0 factors, and define instead a classicalzeta function
Zw(s) as

Fw(s) ≈ Zw(s) =
∏
p

(
1− wp e−sLp

|3p|
)
. (20)

The subtle difference between zeta functions and the full Fredholm determinant is far beyond
the scope of this paper. The approximations we will apply are too rough to be able to tell the
difference.

If the zeta function is entire, the trace can be written as a sum over zerossγ of the zeta
function

tr LLw =
∑
γ

esγ L (21)

where esγ L can be interpreted as the eigenvalues of the evolution operator. The classical zeta
functionZw(s) can, in exact analogy with the semiclassical zeta function, be subject to a cycle
expansion

Zw(s) =
∑
α

aα(w)e
−sLα . (22)

We will eventually use the weightw(x,L) to account for diffraction but for the time being it
is just an arbitrary weight.

2.4. The BER approximation

We note that the equality between representations (17) and (18) also holds after smearing:

tr LLσ ≡
∑
p

Lp

∞∑
r=1

wrp
δσ (L− rLp)
| det(1−Mr

p)|
= 1

2π i

∫ a+i∞

a−i∞
esL

F ′w(s)
Fw(s)

e(isσ )
2/2 ds (23)

whereδσ (·) are Gaussians of standard deviationσ . Gross features of the periodic sum (23) are
encoded in the behaviour of the zeta function for smalls and will here be estimated by means
of the BER approximation [27].

In our final formulae we will need more complicated cycle sums than traces, but their
gross features will still be related to the behaviour of a zeta function for small values ofs.

The probabilistic approach that underlies the BER approximation has a long history: see,
e.g., [31]. It was put into the context of Ruelle resonances by Baladiet al [27]. In [23–26]
the formalism was generalized to include zeta functions with general thermodynamic weights,
and the evaluation of chaotic averages.

A typical trajectory of an intermittent system fluctuates between chaotic and quasi-regular
behaviour. The basic idea is to define a surface of a section such that all trajectories from the
section back to itself traverse a chaotic region at least once. A chaotic burst is assumed to
obliterate the memory of the preceding quasi-regular period.
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The basic object in the BER approximation is the distribution of recurrence times to
the surface of section: the coordinate on this surface of section will be denotedxs . To
define it, let1s(xs) be the length of such a recurring trajectory starting atxs . Further, let
w(xs) ≡ w(xs,1s(xs)) be the weight associated with this segment. We define the (weighted)
distribution of recurrence time as

pw(L) =
∫
w(xs)δ(L−1s(xs)) dµ(xs) (24)

where dµ(xs) is the invariant measure of the associated Poincaré map, which we assume to
be normalized:

∫
dµ(xs) = 1. The approximate zeta function is then given in terms of the

Laplace transform of this function [23–25]:

Z(s) ≈ Ẑ(s) = 1−
∫
pw(L)e

−sL dL. (25)

The approximation is expected to work well for smalls, provided the mixing of the map is
‘much faster’ than that of the flow. This requirement can be realized by intermittent flows if
the map is constructed according to the prescription above. The BER approach is ideal for the
Sinai billiard whose disc-to-disc map is uniformly hyperbolic, whereas the flow is not†.

2.5. Penumbra diffraction

A convenient starting point for deriving the semiclassical trace formula for billiards, and to
study its limitations, is the boundary integral method [10, 15, 32]. The eigenvalues of the
problem are those for which the following integral equation has a solution:

u(r(s)) = 2
∫
S

∂G(r(s), r(s ′))
∂n̂s

u(r(s ′)) ds ′. (26)

The integral is performed along the boundary of the billiard. The functionu(r(s)) is the normal
derivative of the wavefunction

u(r(s)) = ∂9(r(s))

∂n̂s
. (27)

The boundaryr(s) is parametrized by the Birkhoff coordinates.
We can write equation (26) symbolically as a matrix equation

(I −A)U = 0 (28)

having a solution when det(I −A) = 0. This determinant is rewritten as

det(I −A) = etr log(I−A) = e−
∑∞

n=1
1
n

tr(An) (29)

where

tr(An) = 2n
∫

ds1 . . .dsn
∂G(r(s1), r(s2))

∂n̂s1
. . .

∂G(r(sn−1), r(sn))

∂n̂sn−1

∂G(r(sn), r(s1))

∂n̂sn
. (30)

There is considerable freeedom of choice of the Green functionG(r, r′). In order to study
the problem of penumbra diffraction Primacket al [15] suggested using the one-disc Green
function (see below) in (26). The integral in (26) then needs to be performed only along the
square boundary.

The one-disc Green function reads [33]

G(r1, r2,1θ) = i

8

∞∑
`=−∞

(H
(2)
` (kr1) + S`(kR)H

(1)
` (kr1))H

(1)
` (kr2)e

i`(1θ) (31)

† Stability3p can be exponentially bounded with topological lengthnp (number of intersections with the disc by
cyclep) but not with physical lengthLp .
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Figure 1. Some notation used in the discussion of the one-disc Green
function.

whereH(1)
` (z) andH(2)

` (z) are Hankel functions andr1, r2 and1θ are explained in figure 1.
The phase shift functionS`(kR) is defined by

S`(kR) = −H
(2)
` (kR)

H
(1)
` (kR)

. (32)

Using Poisson resummation we get

G(r1, r2,1θ) =
∞∑

m=−∞
G(m)(r1, r2,1θ) (33)

where

G(m)(r1, r2,1θ) = i

8

∫ ∞
−∞
(H

(2)
` (kr1) + S`(kR)H

(1)
` (kr1))H

(1)
` (kr2)e

i`(1θ+2πm) d`. (34)

The determinant det(I −A) reduces to the Gutzwiller–Voros zeta function if we

(1) retain only the integral approximationG(m=0) in (34) for the Green function,
semiclassically this means that classically forbidden orbits such as creeping orbits are
neglected;

(2) use the Debye approximations for the Hankel functions; and
(3) compute the integrals by stationary phase. The term tr(An) in (30) will now contain

contributions from all periodic orbits withn bounces on the square boundary.

In figure 2 we plot the circle Green function together with its semiclassical limit.
Semiclassically there is a discontinuity atd = R (whered is the classical impact parameter)
marking the transition between the lit region and the shadow. In the exact Green function there
is of course a smooth transition through what was calledthe penumbrain [15]. A destructive
interference between the rays starts already in the lit region, at some critical impact parameter
d = dcrit , and continues into the classical shadow. In the appendix we show thatdcrit is given
by

dcrit = (1 + ε(kR))R (35)

with ε(kR) (denotedεmax in the appendix)

ε(kR) = c · (kR)−2/3 (36)

wherec depend only weakly (logarithmically) onkR, r1, r2 andR.
Within the penumbra the usually semiclassical look of the Green function is lost. The

circle Green function can no longer be written as the sum of a direct and a reflected ray, leading
to contributions of the formCeikL. To use the periodic orbit apparatus described in section 2.3
we need a weight that is multiplicative along the flow. However, we will not use the cycles
to actually compute the spectrum. We are only interested in estimating the error induced by
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Figure 2. The circle Green function versus impact parameterd for fixed values ofk = 30,R = 1
andr1 = r2 = 3. The full curve represents the exact result and the dashed curve the semiclassical
approximation.

penumbra diffraction. We can then suffice with a rather crude weight, which we will choose
to be multiplicative. Before making up our mind exactly how this should be achieved, let us
discuss some properties of the periodic orbits in the Sinai billiard.

The cycles can be coded by associating a (coprime) lattice vectorq with each disc-to-disc
segment, see section 3.3. In the limit of smallR any such periodic sequencept = q1q2 . . . qn
can be realized in the system, except for the rule that two consecutive lattice vectors may not
be identical [24]. Suppose now that we increase the sizeR of the disc. Some segment of the
periodic orbit, sayq1, would then eventually need to go through the disc which, of course, is
prohibited: the cycle is then said to be pruned. Let us say that this happens whenR = Rbif .
ForR < Rbif , there is another cyclepr = q1aq1bq2 . . . qn, identical topt except that it does
scatter at the the disc whenpt just passes by. WhenR = Rbif , pt andpr overlap exactly and
whenR > Rbif they are both pruned. This is an analogue of the saddle-node bifurcation in
smooth potential, and the only source or pruning in the Sinai billiard. For a lucid discussion
of pruning in billiards, see [34].

Obviously there is a close connection between pruning and penumbra diffraction. The
semiclassical weights drop suddenly to zero when the pair is pruned. We have learned from
our studies of the circle Green function that the quantum pruning is more gradual.

To estimate the error we will say that the pair effectively annihilate each other if they are
within the transition region discussed above. Since|3pr | � |3pt |, we will in practice only
consider the removal ofpt . The pairing argument above guarantees that these uncorrected
periodic orbits do not outnumber the one that are actually corrected.

So we define a cycle to be diffractive if it passes the disc within the distanceεR (as given
by (36)). The error of the semiclassical weightCp for a diffractive cycle is thus defined as
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δCp = −Cp. A pseudo-orbit is diffractive if at least one of the participating prime cycles is
diffractive. The error of the diffractive pseudo-orbit’s amplitude is thusδCα = −Cα.

To exclude diffractive cycles from cycle sums we introduce a multiplicative cycle weight
wp such thatwp = 0 if the orbit is affected by diffraction andwp = 1 if it is not. Exactly how
this is done is discussed in section 3. The associated pseudo-cycle weightwα is consequently
zero if one of the participating primes cycle is diffractive, otherwise it is unity.

One can also consider families of cycles withn passages of the penumbra. For each
passage the trajectory can either choose to bounce off the disc or not. So such a family thus
consists of 2n members and only one of them is uncorrected according to our rule above. This
is the one bouncing at every passage of the penumbra, the semiclassical weight of this one is
of course very much suppressed and the neglect of this orbit is completely negligible.

The weight now depends on the parameterε. We will skip the indexw on the classical
zeta function (20) and instead denote itZ(s; ε). Traces will be denoted trLLε and coefficients
of the cycle expansion (22) will be denotedaα(ε).

3. Preparation

3.1. Perturbation of the Berry–Keating zeros

Let k0 be a zero ofD(k) as given by (13) (with superscript omitted):

D(k0) = 2
∑
α

Cα cos(Lαk − πN̄(k)) = 0. (37)

All pseudo-orbit sums are henceforth subject to the cutoffLα < LBK , which will not be
explicitly written out in the sums.

We are interested in how small errors in the amplitudesCα will effect the location of this
zero. We thus add a small perturbation

δD(k) = 2
∑
α

δCα cos(Lαk − πN̄(k)) (38)

whereδCα is the error ofCα, and try to solve

D(k) + δD(k) = 0. (39)

We then expandk = k0 + δk and consider the solution to

D′(k0)δk + δD(k0) + δD′(k0)δk = 0. (40)

We neglect the last term, it provides higher-order corrections, and get

δk = −δD(k0)

D′(k0)
. (41)

We will consider the perturbation of a ‘typical’ zero, sitting at a distance∼d̄−1 (whered̄ = dN̄
dk )

from the neighbouring zeros.
We implement the restriction to atypical zero by relating the derivative ofD′(k0) to the

average amplitude of the oscillating functionD(k0). If we furthermore assume that these
oscillations are sine-like we can write

D′(k0) = d̄
√

2π2〈D(k0)2〉. (42)

The averages〈·〉 are taken over a range1k fulfilling d̄−1 � 1k � k0. We then get for the
mean square of the shift

〈δk2〉1/2 = d̄−1

( 〈δD(k0)
2〉

2π2〈D(k0)2〉
)1/2

. (43)
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First we focus on the denominator of equation (43). Performing the average we get

〈D(k0)
2〉 = 1

222
∑
α

C2
α (44)

if we assume that cross terms cancel out, cf section 5.3. This function is essentially self-
averaging, it increases in small steps ask0 is increased. It will be related to the zeta function
in the next section.

The average perturbation is, by the same arguments, given by

〈δD2(k0)〉 = 2
∑
α

δC2
α (45)

and

〈δk2〉1/2 =
(∑

α δC
2
α∑

α C
2
α

)1/2

d̄−1/
√

2π2 ≡ F(k0)d̄
−1/
√

2π2. (46)

Following our reasoning in section 2.5 we put

δC2
α = (1− wα)C2

α. (47)

This means that the correction isδC2
α = C2

α if one of the participating prime cycles inα is
diffractive, otherwise the correction is zeroδC2

α = 0. We can rewrite the functionF as

F(k0) =
(

1−
∑

α wαC
2
α∑

α C
2
α

)1/2

. (48)

Recall that we are only considering pseudo-orbits such thatnp 6 1 so

|Cα=p1p2...pk |2 = |3α|−1 ≡ |3p1 ·3p1 . . . 3pk |−1 = aα(ε = 0) (49)

which we have identified with the coefficients of the cycle expansion (22) (please recall the
notational conventions introduced at the end of section 2.5). We can now rewrite the numerator
and denominator of (48)∑

α

wα(ε)C
2
α =

∑
α

|aα(ε)| (50)∑
α

C2
α =

∑
α

|aα(0)|. (51)

Obviously, the functionF is bounded by 06 F 6 1. The perturbative approach taken in
this section is valid only if the predicted value ofF is small. A semiclassical error for a chaotic
system (hence lacking quantum numbers) can only be well defined as long as it is much smaller
than the mean spacing, so the restrictionF < 1, resulting from the perturbative approach, can
hardly be considered as a drawback of the perturbative method. IfF is approaches unity
there is no other sensible interpretation than a failure of the Berry–Keating formula to resolve
individual states.

3.2. Treating the pseudo-orbit sums

The goal of this section is to relate the pseudo-orbit sums (50) and (51) to various zeta
functions. There is an important distinction between these pseudo-orbit sums and the cycle
expansion (22)—the occurrence of the absolute values in equations (50) and (51).

We start with the basic classical zeta function, given by equation (20):

Z(s; ε) =
∏
p

(
1− wp(ε)e

−sLp

|3p|
)
. (52)
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Consider now the cycle expansion of a slightly different zeta function (note the plus sign!)

Z+(s; ε) =
∏
p

(
1 +wp(ε)

e−sLp

|3p|
)
=
∑
α

bα(ε)e
−sLα . (53)

All bα are positive; in fact, they are the summands of equations (50) and (50)

bα(ε) = |aα(ε)|. (54)

We rewriteZ+(s; ε) as

Z+(s; ε) =
∫ ∞

0
b(L; ε)e−sL dL (55)

where

b(L; ε) =
∑
α

bαδ(L− Lα). (56)

Conversely, the functionb(L; ε) is related to the zeta functionZ+(s; ε) by means of an inverse
Laplace transform

b(L; ε) = 1

2π i

∫ σ+i∞

σ−i∞
Z+(s; ε)esL ds. (57)

The semiclassical error (48) can now be written in terms of the functionb(L; ε)

F =
√√√√1−

∫ LBK
0 b(L; ε)dL∫ LBK
0 b(L; 0)dL

(58)

whereLBK is given by equation (14) andε is given by equation (36).
If we now define yet another zeta function

Z2(s; ε) =
∏
p

(
1− w2

p

e−2sLp

|3p|2
)

(59)

we can rewriteZ+(s; ε) as

Z+(s; ε) = Z2(s; ε)
Z(s; ε) (60)

cf [35]. If the involved zeta functions are entire we can write

b(L; ε) =
∑
γ

res
Z2(s; ε)
Z(s; ε)

∣∣∣∣
s=sγ

esγ L (61)

which should be compared with (21). We will see that this situation will arise ifε 6= 0. The
asymptotic behaviour ofb(L; ε) is (under much milder assumptions on the analytic properties)
related to the leading zeros0(ε)

b(L; ε) ∼ res
Z2(s; ε)
Z(s; ε)

∣∣∣∣
s=s0

es0L = Z2(s0(ε); ε)
Z′(s0(ε); ε) es0L. (62)

This leading asymptotic behaviour is all we need to evaluate the the asymptotics of the integrals
in equation (58). Moreover, as discussed in section 2.4, the behaviour of zeta functions close
to the origin is insensitive to fine details in the spectrum of periodic orbits. The large-scale
structure of periodic orbits will be studied in the next section.
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Figure 3. Definition of various angles associated with scattering to discq.

3.3. Implementing the BER approximation for the Sinai billiard

The BER approximation outlined in section 2.4 is very well suited for the Sinai billiard, in
particular if the scatterer is small. The obvious choice of the surface of the section is provided
by the disc itself [24].

To compute the distribution of recurrence times (24) it is convenient to consider the
unfolded representation of the Sinai billiard. A trajectory segment from the disc to itself can
thus be considered as going from one disc, associated with lattice vector(0, 0) to some other
disc represented by lattice vectorq. All segments going toq have essentially the same length†
q = |q| and equation (24) simplifies to

p(L; ε) =
∑
q

âq(ε)δ(L− q) (63)

where

âq(ε) =
∫
�q

w(xs) dµ(xs). (64)

�q is the set of initial pointsxs whose target isq. The natural phase space coordinates for
the disc-to-disc map are Birkhoff coordinatesxs = (Rφ, sinα), see figure 3 for definition of
the anglesφ andα. The invariant density is simply uniform, the measure is dµ(xs) ∼ dxs =
d(R8) d(sinα). The explicit knowledge of the measure enables us to compute the quantities
âq

âq(ε) =
∫
�q

w(xs) dxs. (65)

The approximate zeta function (25) is then

Ẑ(s; ε) = 1−
∫ ∞

0
p(L; ε)e−sL ds = 1−

∑
q

âq(ε)e
−sq . (66)

The weight, as defined in section 2.5 will be zero,w(xs) = 0, if the trajectory starting at
xs and heading for discq passes some other disc within a distanceεR before actually hitting

† The variation is of orderR which will be completely neglible in what follows.
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Figure 4. Scattering to discq = q′ + nqc with n = 2 in the corridorqc.

q, otherwise it is equal one,w(xs) = 1. If ε = 0, thenâq is the total fraction of the phase
space area corresponding to discq.

The computation ofp(L; ε) will unfortunately be long and boring. It is possible for the
reader to jump directly to the results (85)–(88) and go on from there without losing too much
of the context.

The calculation will run in parallel with [36] in large parts and we will frequently refer to
that paper. All error estimates in [36] carry over directly, so we will simply omit them below
to make things a little more transparent. Nevertheless, we will without hesitation display
equations as strict equalities, but the reader should bear in mind that all expressions are valid
in the smallR limit.

Keeping track of the accessible discs.It is easy to see that only discs represented by coprime
lattice vectors are accessible. In [36] we showed that any coprime lattice vectorq can uniquely
be written in the formq = q′ +nqc, wheren > 2 andq′ represents the lattice points closest to
the line from(0, 0) to qc. We say that discq lies in theqc corridor, see figure 4.

Actually, there are two such neighbouring lattice points for each corridor vectorqc, one
with smaller and one with larger polar angle. Below we assume thatq′ is the one with the
larger polar angle, the other case is completely analogous, and is accounted for by multiplying
by a factor of two on some strategic occasions, see below.

Computingâq. Consider now a trajectory segment hitting discq. The relation between the
phase space variablesφ andα, see figure 3, and the scattering angleβq on discq is given by

Rq sinβq − R sinα = q sin(φ − θq − α) (67)

whereθq is the polar angle of the lattice vectorq, andRq is the radius of the target disc. The
argument of sin(φ − θq − α) is small whenq is large so we can expand the sine to first order
and get

Rq sinβq − R sinα = q(φ − θq − α). (68)

The disc under observation,q, is potentially shadowed only by two discs, namelyq − qc and
qc, see figure 4. We implement the weightw(xs) by simply inflating these two discs from
radiusR to (1 + ε)R.

To see how�qc shadows�q we replaceq in (68) byqc and put

βqc = π/2
Rqc = (1 + ε)R

θqc = θq − 1/(qqc).

(69)
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This gives an equation (in terms of phase space variablesα andφ) for the relevant boundary
of �qc

(1 + ε)R − R sinα = qc
(
φ − θq +

1

q qc
− α

)
. (70)

We can now treat�q−qc in the same way. We replaceq in (68) byq − qc and put

βq−qc = −π/2
Rq−qc = (1 + ε)R

θq−qc = θq + 1/(q qc)

(71)

and get the equation for the borderline of�q−qc

−(1 + ε)R − R sinα = (q − qc)
(
φ − θq − 1

q qc
− α

)
. (72)

Next we want to change variables from (α, φ) to (sinα, sinβq)): the relation is given by
equation (68).

By combining equations (68) and (70) we see that the shadowing of�qc corresponds to
the straight line

qc sinβq + (qn − qc) sinα = q(1 + ε)− 1

R
. (73)

Similarly, by combining equations (68) and (72) we see that the shadowing of�q−qc is given
by

(q − qc) sinβq + qc sinα = q(1 + ε)− 1

R
. (74)

If q were not shadowed,�q would be given by−1< sinβq < 1 and−1< sinα < 1. So the
integral (65) is simply the area of the remainder of this square, lying inside the lines given by
equations (73) and (74).

The integration element dxs in (65) over�q is (to leading order)

dxs = R

4πq
d(sinα) d(sinβq). (75)

It is normalized in such a way that the integral over one octant of the plane is unity.
We arrive at the following results:

âq(ε) = R

πq



1 0< q <
1

2R

1

1 + ε/2

1− (1/2R − q − εq/2)
2

qc(q − qc)
1

2R

1

1 + ε/
< q <

(
1

2R
+ qc

)
1

1 + ε/2
(1/2R − qc − εq/2)2
(q − qc)(q − 2qc)

(
1

2R
+ qc

)
1

1 + ε/2
< q <

2

ε

(
1

2R
− qc

)
0

2

ε

(
1

2R
− qc

)
< q.

(76)

The result can be described in the following way. All discs inside a radiusq < 1
2R

1
1+ε/2 are

unshadowed and the corresponding trajectory segments not diffractive. Outside this horizon
the accessible discs are aligned along corridors, each corridor characterized by the vectorqc,
subject to the conditionqc < 1

2R
1

1+ε/2. Segments longer than2
ε
( 1

2R−qc) in a particular corridor

qc are always affected by diffraction. Segments longer than2
ε

1
2R are always diffractive.



7332 P Dahlqvist

Figure 5. The integral ofp(L(ξ)) versusξ . The radius isR = 0.1 andε = 0. The (full) staircase
curve is obtained from equation (63) with amplitudesâq(ε) given by (76). The (dashed) smooth
curve is obtained from equations (86)–(88).

This means that there is a one-to-one correspondence between corridors (beyond the
horizon) and accessible discs inside the horizon, so in order to perform the sum (66) we just
need to know the finite number of coprime lattice points inside the horizon, exactly how the
sum should administrated we be clear below.

We can now obtain an approximate zeta function by plugging theseâq into (66). The
integrated recurrence time distribution

∫ L
0 p(L

′) dL′ =∑q:|q|<L âq is plotted in figures 5 and
6 for the radiusR = 0.1.

Statistical treatment of the coprime lattice vectors.However, ifR is small, there is a vast
number of coprime lattice points inside the horizon and, according to number theory, they tend
to be uniformly distributed over the plane. As a matter of fact, one can use this uniformity
to turn the sum into an integral and write down an explicit formula for the distribution of
recurrence times (63).

Asymptotically, there are 6L2/π coprime lattice pointsq such that|q| < L in the first
octant so that the mean density of coprime lattice points is, in an asymptotic sense,

dc(L) = 12L

π
. (77)

(i) First we consider the caseL < 1
2R

1
1+ε/2.

Hereâq is a function ofq only, cf equation (76). The distribution functionp(L; ε) becomes

p(L; ε) =
∑
q

âqδσ (L− q) =
∑
q

R

πq
δσ (L− q)
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Figure 6. Same as figure 5 but withε = 0.2.

= dc(L) R
πL
= 12R

π2
. (78)

We introduce the rescaled lengthξ = 2RL and express the result as

p(L(ξ); ε) = 12R

π2
ξ <

1

1 + ε/2
. (79)

(ii) Next we consider thetransition region1/2R < L < 1/R.
According to equation (76) the amplitudesâq depend on the length of corridor vectorqc = |qc|
and the length ofq: âq = â(qc, q). The lengthq is approximatelyq ≈ q ′ + nqc ≡ 1qc + nqc,
where1 is a number such that 0< 1 < 1, see figure 4. We get

p(L; ε) = 2
∑
qc

∞∑
n=2

â(qc, q)δσ (L− q)

= 2
∑
qc

∞∑
n=2

â(qc, q)δσ (L− qcn−1qc) (80)

where we inserted the factor 2 to account for both neighbours ofqc.
We will now turn the sums overqc andn into an integral over the density of coprime

lattice vectors. The parameter1 is uniformly distributed over the interval 0< 1 < 1 [24],
this means that we can just integraten from n = 2 to∞:

p(L; ε) = 2
∫ 1/2R−εL/2

0
dqc dc(qc)â(qc, L)

∫ ∞
n=2

δσ (L− qcn)

= 2
∫ 1/2R−εL/2

0
dqc dc(qc)â(qc, L)

1

qc
θσ (L− 2qc)

= 2
∫ min(1/2R−εL/2,L/2)

0
dqc dc(qc)â(qc, L)

1

qc
(81)
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whereθ(x) is the unit step function.
Since we are considering the region12R

1
1+ε/2 < q < 1

R
1

1+ε , we have min(1/2R −
εL/2, L/2) = L/2. Next we insert the expression forâ(qc, q) from equation (76) anddc(qc)
from equation (77)

p(L; ε) = 2
∫ l/2

l+εL/2−1/2R
dqc

12qc
π

1

qc

R

πL

(
1− (1/2R − L− εL/2)

2

qc(L− qc)
)

+2
∫ L−εL/2−1/2R

0
dqc

12qc
π

1

qc

R

πL

(1/2R − qc − εL/2)2
(L− qc)(l − 2qc)

. (82)

We change the integration variable toη = 2Rqc and use, as before,ξ = 2RL. This leaves us
with the following integral to solve:

p(L(ξ); ε) = 24R

π2

(∫ ξ/2

ξ+εξ/2−1

dη

ξ

(
1− (1− ξ − εξ/2)

2

η(ξ − η)
)

+
∫ ξ+εξ/2−1

0

dη

ξ

(1− η − εξ/2)2
(ξ − η)(ξ − 2η)

)
. (83)

The result of this integral is displayed below (87).
(iii) There now remains only the case1

R
1

1+ε < L < 2
ε
.

The calculation is completely analogous to the previous case and we get

p(L(ξ); ε) = 2
∫ 1/2R−εL/2

0
dqc dc(qc)

1

qc
a(qc, q = L)

= 2
∫ 1/2R−εL/2

0
dqc

12qc
π

1

qc

R

πL

(1/2R − qc − εL/2)2
(L− qc)(L− 2qc)

= 24R

π2

∫ 1−εξ/2

0

dη

ξ

(1− η − εξ/2)2
(ξ − η)(ξ − 2η)

. (84)

Results. It is time to summarize our results so far. It is natural to display the final results in
terms of the distribution of the rescaled recurrence lengthsξ = 2RL rather thanL. We call
the distributionf (ξ ; ε) and it is trivially related top(L; ε) according to

p(L; ε) dL = f (ξ ; ε) dξ. (85)

Inside the horizon we already have

f (ξ ; ε) = 6

π2
ξ <

1

1 + ε/2
. (86)

Beyond the horizon we get, after having performed the integrals (83) and (84)†

f (ξ ; ε) = 3

π2ξ2
(2ξ − εξ2 + [4ξ − 3ξ2 − 2εξ2] log ξ

+[4ξ2 − 8ξ2 + 4− 4εξ2 − ε2ξ2 − 4εξ ] log(ξ(1 + ε/2)− 1)

+[4ξ − ξ2 − 4− 2εξ2 − ε2ξ2 + 4εξ ] log |ξ(1 + ε)− 2|)
1

1 + ε/2
< ξ < 2/ε. (87)

This is valid up to the pointξ = 2/ε where the function chokes. After that we have

f (ξ ; ε) = 0 2/ε < ξ. (88)

† The results of these two integrals can be summarized in one formula. Note the absolute value in one of the
logarithms!
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The integral
∫ ξ

0 f (ξ
′; ε) dξ ′ of these expressions is plotted in figures 5 and 6. We note that

the statistical treatment of the lattice vectors works surprisingly well, even for such a ‘large’
radius asR = 0.1.

Zeros and traces. It is also natural to let the zeta function (66) depend on a rescaled variable
z as defined by

s = 2Rz. (89)

A power series expansion of the the zeta function is related to the moments of the
distributionf (ξ ; ε)

Ẑ(z; ε) = 1−
∫

e−zξ f (ξ ; ε) dξ = 1−
∞∑
m=0

(−z)m
m!

∫
ξmf (ξ ; ε) dξ. (90)

These moments can be computed from equations (86)–(88) and are found to be

∫
ξmf (ξ ; ε) dξ =


1− ε + O(ε2 logε) m = 0

(1 + O(ε logε)) m = 1

(O(logε)) m = 2
O(1/εm−2) m > 3.

(91)

The leading zeroz0 of Ẑ(z; ε), occurring in equation (62), can be computed from
equations (90) and (91), and is found to be

z0 = −ε + O(ε2 logε). (92)

We also need the derivative of the zeta function evaluated at this zero, cf equation (62),

Ẑ′(z0) = 1 + O(ε logε). (93)

In figures 7 and 8 we compare these asymptotic formulae with results from numerical
computation of the BER zeta function as obtained from equations (86)–(88).

Traces will not be a direct concern to us. But, by computing traces in the BER framework,
we can get an idea of the influence of non-leading zeros by computing the trace in the BER
approximation. That information is relevant for the next section. The computation is done
numerically by the fast Fourier transform (FFT) technique.

The trace formula is in our rescaled units

trLξε =
1

2π i

∫ a+i∞

a−i∞
ezξ
(

d

dz
log Ẑw(z)

)
dz. (94)

Traces forε = 0 andε = 0.1 are plotted in figures 9 and 10. For smallξ the trace (in the BER
approximation) is given by

tr Lξε = exp(6ξ/π2)− 1 ξ <
1

1 + ε/2
. (95)

If the reader wants to verify this, the following hint should be useful: the trace trLξε in the
rangeξ < 4 depends only on the behaviour of the distributionf (ξ) in the same range (ξ < 4)
wheref is constant.

In the largeξ limit, the asymptotic behaviour is given by the leading zeroz0, and thus

tr Lξε ∼ exp(z0ξ) ∼ exp(−εξ) (96)

see figure 10. We observe that this asymptotic result settles down very early, that is long before
the natural scale 2/ε, cf equation (88).
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Figure 7. The leading zeroz0(ε) versusε compared with the asymptotic formula (92).

Figure 8. The derivativeẐ′(z0) evaluated at the leading zero versusε. It approaches unity as
ε → 0 as predicted by equation (93).
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Figure 9. The trace (94) forε = 0 (full curve). Comparison is made with equation (95) for small
values ofξ (dashed curve) and equation (97) for large values ofξ (dotted curve).

Figure 10. The trace (94) forε = 0.1. Comparison is made with equation (95) for small values of
ξ (dotted curve) and equation (96) for large values ofξ (dashed curve).
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For any finiteε, the zeta function is entire sincef (ξ ; ε) has compact support. But when
ε → 0, zeros will accumulate along the negative realz-axis, building up a branch cut. For the
limiting caseε = 0, this will lead to a power law correction [24,26]

trLξ ∼ 1− 2

π2ξ
(97)

see figure 9. This power law will not be essential in the following.
We also need to know the value ofZ2(z0; ε) as defined in (59). This zeta function contains

the square of|3p| in the denominator. This means that atz = z0 (which is close to the origin
for small ε) the value of the zeta function will be dominated by the shortest cycles, which,
for smallε, will be non-diffractive. This implies thatZ2(z0; ε) tends to a constant faster than
Ẑ′(z0) do, asε → 0. A simple estimate, based on the methods in [26] suggests that

Z2(z0, ε) = 1 + O(R2 logR) + O(R2)O(ε) (98)

which should be compared with equation (93).

4. Results

We now possess all the tools we need to finally be able to compute the asymptotic limit of the
error estimateF . From section 3.2 we fetch

F =
√√√√1−

∫ ξBK
0 b(ξ ; ε) dξ∫ ξBK
0 b(ξ ; 0) dξ

(99)

where

ξBK = 2RLBK = AkR (100)

cf equation (14). This expression forF was obtained by perturbing the Berry–Keating
formula. The functionb(ξ ; ε), introduced in section 3.2, captures the average behaviour
of the coefficients of cycle expansions (50) and (51).

To begin with, we are only interested in the leading asymptotic behaviour of the function
b(ξ ; ε). In section 3.2 we related it to various zeta functions, and got to leading order

b(ξ ; ε) ∼ Z2(z0; ε)
Z′(z0; ε) ez0ξ (101)

valid for large values ofξ .
In section 3.3 we used the BER approximation to find

z0 ∼ −ε (102)

Z′(z0; ε) ∼ 1 (103)

Z2(z0; ε) ∼ Z2(0, 0) (104)

to leading order inε, for error bounds please go back to section 3.3.
Finally, from section 2.5 we have

ε = c(kR)−2/3. (105)

We are then in the position to compute the largekR limit of the error estimate, which we
easily evaluate to

F ∼
(

1− 1− e−εξBK

εξBK

)1/2

=
(

1− 1− e−cA(kR)
1/3

cA(kR)1/3

)1/2

. (106)
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We observe that this function will definitely approach unity which implies that individual
eigenstates will cease to be resolved. This final collapse will occur on the scale

kR ∼ (cA)−3. (107)

But how is the asymptotic expression (106) approached?
Actually we know thatF = 0 if kR is less than some critical value which is given by

ξBK = 1/(1 + ε/2) (cf equation (95)) or written out explicitly

AkR = 1

1 + c
2(kR)

−2/3
. (108)

The solution is given by

(kR)threshold= ( 1
6α

1/3− cα−1/3)3 (109)

where

α = 108

A
+ 6
√

6c3 + 324/A2. (110)

Unstable periodic orbits below this threshold are never diffractive. Of course, neutral orbits in
this range are subject to diffraction corrections but we only consider the error due to unstable
orbits. We are thus unable to estimate the semiclassical error for small values ofkR.

To estimate the intermediate behaviour we introduce a further approximation of
equation (57)

b(ξ ; ε) = 1

2π i

∫ σ+i∞

σ−i∞

Z2(z; ε)
Z(z; ε) ezξ dz ≈ Z2(0, 0)

∫ σ+i∞

σ−i∞

1

Z(z; ε)e
zξ dz (111)

which is highly reasonable, cf equation (98). We replace the classical zeta functionZ(z, ε)

by the approximate onêZ(z, ε), the transforms are again computed by the FFT technique and
the resulting functionF(kR) is plotted in figure 11. In the computation we useA = 1

8 and an
arbitrary value ofc = 1. What we see is a very steep ascent at the threshold(kR)thresholdas
discussed above and a fast approach to the asymptotic formula (106). It is likely that individual
states cease to be resolved long before the scale (107). However, it is hard to make any safe
prediction regarding the crudeness of our treatment of the penumbra problem, see also the
discussion ofc below. However, the functionF doesapproach unity, sooner or later, and it is
difficult to find an prevarication of this fact.

We note from figure 11 that above the threshold, and up to fairly large values ofk, the
functionF(k) is approximatelyF(k) ≈ 0.4. This corresponds to a semiclassical being 10%
of the mean spacing, which is consistent with the findings of [6].

There is an issue which we appear to have forgotten: the constantc in equation (126) is
not really a constant, it depends weakly onkR, R, r1 andr2, see figure 1 and the appendix.
First, this dependence is too weak to be able to alter our general conclusions. Moreover, it
is not obvious how to implement the dependence onr1 andr2. In the BER application we
consider disc-to-disc segments whereas in the study of the circle Green function in section 2.5
we consider (square) boundary-to-boundary segments. To make the exact connection one
has to convolute the circle Green function with itself, cf equation (30), the outcome of this
operation is not obvious. So we usedc as if it was a constant when implementing the BER
approximation. Therefore, the ‘constant’c coming out of the other end of the BER calculation
should have some residual weak dependence onR andkR.
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Figure 11. The error estimateF(kR) versuskR according to equation (111) (full line) compared
with the asymptotic expression (99) (dashed line).A = 1

8 andc is chosen to bec = 1.

5. Discussion of the validity of the various approximations involved

No chain is stronger that the weakest link. The results presented here are based on a long series
of approximations and assumptions. Some of them may be readily justified and should hardly
be controversial but some may seem much cruder and one may ask if they will allow the chain
to break.

5.1. The correction to the semiclassical weights

On one hand we argued that penumbra diffraction cannot be accounted for by multiplicative
corrections but on the other hand weneededmultiplicative corrections to be able to use the
machinery of the periodic orbit theory and evolution operators. So we simply constructed a
multiplicative weight inspired by the penumbra diffraction that should be able to provide us
with an estimate of the error in the Berry–Keating formula. The procedure was discussed at
some length in section 2.5.

One could object that it is too crude to approximate the gradual transition of the circle
Green function with a step function, and suggest a smoother weight. This is in principle
possible, but that would make the calculation in section 3.3 immensely more complicated, and
hardly change the result in any significant way.

5.2. The BER approximation

It is natural that a theory for the asymptotics of the periodic orbits is hard to check numerically.
In [24] we compared the exact trace formulae with those of the BER approximation for lengths
up to roughly the horizon 1/2R for the Sinai billiard. The results were encouraging but hardly
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asymptotic.
However, a range of asymptotic predictions of the BER approximation appears to be

correct. It does provide the suggested exact diffusion behaviour in the regular Lorentz gas
(with unbounded horizon) [26,37] and the related correlation decays [38] as well as the small
radius limit of the Lyapunov exponent [36]. We therefore feel confident that the approach
works even if more rigorous results are called for.

We introduced some extra approximations, valid in the smallR limit, and our experience
is that they work excellently even for rather largeR.

One could again raise the objection that the diffractive weight is discontinuous and that
this could cause problems for averages to settle down. However, we saw in section 3.3 that the
effect is just to change the pruning rules slightly, the billiard is as discontinuous as before and
the fluctuations of the pseudo-orbit sums appearing in the numerator and denominator (58) are
similar. The integrals in equation (58) are self-averaging and the fluctuations of the integrands
irrelevant for the estimate of the error.

5.3. The diagonal approximation

The diagonal approximation underlying equation (44) can be verified assuming that the spectral
statistics is given by random matrix theories [39]. Random matrix results are expected to apply
to the Sinai billiard for large values ofkR and our attempts to make predictions have already
been restricted to this limit, mainly because of the problems posed by neutral orbits.

The diagonal approximation on the diffractive sum behind (45) is natural, in particular
since the majority of pseudo-orbits are diffractive for smallε, but by no means obvious.
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Appendix. Stationary phase analysis of the circle Green function

We will consider scatterings in extreme forward angles so only the second term in the integral
(34) (m = 0) contributes. This means that we only need to evaluate the integral

G(0)(r1, r2,1θ) = i

8

∫ ∞
−∞

S`(kR)H
(1)
` (kr1)H

(1)
` (kr2)e

i`1θ d` (112)

where 0� 1θ < π . Actually, this integral is divergent but as long as we study the stationary
phase approximation, it serves our purposes. We can still safely use the Debye approximation
for the Hankel functionsH(1)

` (kr1) andH(1)
` (kr2)

H
(1)
` (z) ∼

√
2

π
√
z2 − `2

ei[
√
z2−`2−` arccos(`/z)−π/4] (113)

becausekr1 � ` and kr2 � `. However, the phase shift function needs a more careful
analysis. The phase shift functionS`(kR) is of unit modulus and we call the phaseγ (kR, `)

S`(kR) = −H
(2)
` (kR)

H
(1)
` (kR)

≡ eiγ (kR,`). (114)

The Green function now reads

G(0)(r1, r2,1θ) =
∫ ∞
−∞

A(r1, r2)e
i(`1θ−9(`)) d` (115)
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where the slowly varying amplitudeA(r1, r2) is composed of the Hankel functionsH(1)
` (kr1)

andH(1)
` (kr2). The asymptotics of the integral is determined by the phase function

9(`) = −γ (kR, `)−
[√
(kr1)2 − `2 − ` arccos(`/(kr1))

]
−
[√
(kr2)2 − `2 − ` arccos(`/(kr2))

]
+ π/2. (116)

We will now investigate the phase ofS`(kR) in detail. To this end we will use the uniform
approximation for Hankel functions relating the phase of Hankel functions to the phase of Airy
functions according to [40]

S`(kR) = − Ai(−x) + iBi(−x)
Ai(−x)− iBi(−x) ≡ eiγ (`,kR) (117)

where

x(kR, `) =


[

3
2(
√
(kR)2 − `2 − ` arccos(`/(kR)))

]2/3
` < kR

−
3

2

(
` · log

(
` +

√
`2 − (kR)2
kR

)
−
√
`2 − (kR)2

]2/3

` > kR.
(118)

Defining

` = kR(1 + ε) (119)

we have for smallε

−x = (
√

2kR)2/3(ε + O(ε2)). (120)

Using this expression forx one gets the so-called transition region approximation. This
approximation fails to yield the Debye approximation as its asymptotic limit but the nice thing
is that there is a considerable overlap because wheneverx � `2/3 we can use the transition
region approximation and whenx � 1 we can use the Debye approximation.

γ (x) is a complicated function but one has the following asymptotic expressions [40]:

γ (x) = −e−
4
3 (−x)3/2(1 + O(1/(−x)3/2)) x →−∞ (121)

γ (x) = −π
2
− 4

3
x3/2 + O(x−3/2) x → +∞ (122)

so we obtain the Debye approximation whenx →∞ as expected.
The stationary phase condition will simply read9`(`) = 1θ (subscripts denote

differentiation). In figure 12 we plot the function9`(`) versus̀ for some arbitrary chosen
values ofr1/R = r2/R = 3 andkR = 30 together with its Debye approximation. The
plot gives a picture of how the stationary phase will perform for all1θ , just place the
ruler horizontally at1θ . If it goes below the maximum, it intersects the curve twice. The
corresponding saddle points correspond to the direct (larger`) and reflected ray (smaller̀),
respectively.

We are interested in the location of the maximum of9`(`). This turns out to lie in the
region where equations (120) and (121) apply. To leading order in(kR) the location of the
maximum is the solution to the equation

−xe−
4
3 (−x)3/2 = 2−8/3(kR)−1/3

 R√
r2

1 − R2
+

R√
r2

2 − R2

 ≡ (kR)−1/3C(r1, r2). (123)

By elementary methods one can show that the solution to this equation lies in the range

9

16

(
log

(kR)1/3

C(r1, r2)

)2/3

< (−x)max <
(

log
(kR)1/3

C(r1, r2)

)2/3

. (124)
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Figure 12. The function9`(`) versus̀ for fixed values ofk = 30,R = 1 andr1 = r2 = 3.

Where in this range the solution lies is completely irrelevant for us. We use this liberty and
chooseε in (35) to be (cf equation (120))

εmax = 2−1/3(kR)−2/3

(
log

(kR)1/3

C(r1, r2)

)2/3

≡ c(kR)−2/3. (125)

where

c = c(kR,R, r1, r2) = 2−1/3

1

3
logkR +

8

3
log 2− log

 R√
r2

1 − R2
+

R√
r2

2 − R2

2/3

.

(126)
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Artuso R, Aurell E and Cvitanović P 1990Nonlinearity3 361
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